Sound card data modes and NBEMS

Presented to Indiana Elmer Network March 23, 2017

Bob Burns W9BU Wayne Michael AC9HP

Agenda

- Overview of available digital modes
- Applications to auxiliary communications
- Hardware
- Software
- Demo

Audio samples

- Audio samples for the modes mentioned in the following slides can be found here:
 - Modes supported by fldigi: <u>http://www.w1hkj.com/FldigiHelp-</u> 3.21/Modes/index.htm
 - Additional audio samples: http://wb8nut.com/digital/

Original digital modes

- CW
 - On-Off keying of the carrier
 - Very narrow bandwidth
 - No error correction

Original digital modes

RTTY

- Frequency Shift Keying, typically 170 Hz shift
- 100% duty cycle
- As fast as 20 wpm CW
- Still popular for contesting
- No error correction
- Requires:
 - FSK radio and keying circuit or...
 - AFSK using sound card

Hardware decoder modes

- AX.25 Packet
 - Error detection, retransmit until it's correct (ARQ)
 - Store and Forward, digipeaters
 - 1200 baud common, 19,200 baud max
 - Dedicated TNC or sound card packet engine
 - Used on HF (300 baud), VHF (1200 baud), or UHF (9600+ baud)
 - APRS uses Packet

Hardware decoder modes

- AMTOR (aka SITOR)
 - Specialized form of RTTY
 - FSK at 100 baud
 - Error detection and correction, ARQ
 - Hardware or software
 - No longer popular

Hardware decoder modes

- PACTOR I/II/III
 - Combination of Packet and AMTOR

Can send large files in difficult conditions

- Hardware only, PACTOR I can be RX w/ software
- PACTOR II and III are proprietary
- Clover
 - PSK, full duplex
 - Proprietary

- BPSK 31, 63, 125
 - Binary phase shift keying
 - No error correction
 - BPSK-31 (aka PSK-31) is popular for keyboard-to-keyboard QSOs
- QPSK 31, 63, 125
 - Quad phase shift keying

- Olivia MFSK
 - Olivia X / Y, X=number of tones, Y=bandwidth
 - Usable with very weak signals
 - Forward Error Correction
 - Olivia 8/500

Olivia 16/500

- MT63
 - Fast, noise resistant
 - PSK
 - 500 Hz, 1000 Hz, or 2000 Hz
 - Forward Error Correction
 - MT63-2KL takes about 1 minute per kb

- JT65JT9
 - Very weak signal
 - Good for moon bounce or low-profile antennas
 - Very slow data rate
 - Exchange callsign and location, not much else

WinLink

- World-wide message (e-mail) system that uses radio and the Internet
- Hub and spoke system of Radio Message
 Servers (RMS) and Common Message Servers
 (CMS)
 - Users connect to an RMS
 - RMS's connect to a CMS
- AX.25 Packet on VHF/UHF
- Pactor I/II/III or WinMor on HF
 - WinMor—non-proprietary sound card mode

Auxiliary Communications Applications

- Served agencies have an increasing need for accurate data communications
 - Roster of evacuees
 - Lists of medications
 - Complicated directions to a site
- Error correcting modes a plus
- Must be easy to configure in the field
- We need to provide more than just voice comms from a ham with a handheld radio.

Narrow Band Emergency Message System (NBEMS)

- Keep it cheap
- Keep it simple
- Use open source software
- Don't depend on infrastructure (repeaters, digipeaters, Internet)
- Make it fun
- Any computer, any radio.

Narrow Band Emergency Message System (NBEMS)

- Uses several programs developed by W1HJK
 - fldigi general purpose data engine
 - flmsg messages handling, ARRL Radiograms,
 ICS forms, weather reports
 - flarq/flwrap file transfer, file compression
 - flamp multi-cast file transfer
- Public License, i.e. free
- Windows, Linux, Mac versions

What hardware?

- Radio
- Antenna
- Power supply
- Computer (Windows, Linux, Mac)
- Sound card interface
 - On VHF/UHF, can use audio coupling.

Sound Card Interface Requirements

- Rx audio from radio to computer sound card
- Tx audio from computer sound card to radio
 - Both Rx and Tx need good audio isolation
 - Easy level adjustments a plus
- PTT
 - VOX will work
 - Hardware keying better
- Built-in USB sound card
 - Use computer's sound card at your own risk.

Sound Card Interface Options

- Homebrew
- BuxComm Rascal GLX (\$80)
- MFJ-1204 (\$100)
- Tigertronics SignaLink USB (\$120)
- West Mountain Radio RIGblaster Advantage (\$200)
- ZLP Electronics various models (\$50-240)
- Microham Digikeyer II (\$329)
- Timewave Navigator (\$375).

Radios with built-in sound cards

- Icom
 - IC-7100
 - IC-7200
 - IC-7300
 - IC-7600
- Kenwood
 - TS-590
- Yaesu
 - FT-991A.

How to configure hardware?

- Build or buy a cable to connect sound card interface to radio
- Configure sound card interface
 - Set jumpers
- Install drivers
- Connect USB cable
- Check Windows Device Manager for COM port assignment.

How to configure radio?

- Upper Sideband (USB) for most digital modes
- Receive
 - Turn off noise reduction, notch filter, noise blanker
 - Fast AGC
 - Use IF bandwidth adjustment with caution
- Transmit
 - Turn off compression
 - Turn off equalization
 - Adjust sound card level and mic gain for minimum ALC action
 - Medium power.

Acoustic interface

- No sound card interface needed
- Use any radio
- Hold radio speaker to computer mic
- Hold radio mic to computer speaker
- Manual PTT
- Works well on VHF/UHF FM
 - Even through repeaters
- Use MT63-2KL mode.

fldigi

- fldigi=Fast, Light, Digital
- Uses sound card to decode received signals and encode transmitted signals
- Keys radio (if supported by interface)
- Old, slow computers work fine
- Designed for keyboad-to-keyboard comms
- Macros eliminate repetitive typing.

flmsg

- Built-in templates for common message formats:
 - ARRL Radiograms
 - ICS forms
 - Custom templates
- Uses check-sums to ensure accuracy
 - Sending station computes check-sum for sent message and inserts check-sum into message
 - Receiving station computes check-sum for received message and compares to sent check-sum
 - If check-sums match, error-free message
 - If check-sums don't match, resend message
- flmsg can automatically open received messages.

How to configure software?

- Download and install fldigi
 - Configure settings
- Download and install flmsg
 - Configure settings.

fldigi set-up wizard—Operator info

fldigi set-up wizard—Audio devices

fldigi set-up wizard—Transceiver

(only if your sound card interface has transceiver control)

fldigi set-up wizard—Tabular data

(not necessary for NBEMS)

fldigi addl set-up—Modems—MT63

fldigi addl set-up—RSID

fldigi addl set-up—RSID enable

- Enable RxID on main window
- Enable TxID on main window

flmsg set-up—Personal

flmsg set-up—Date/Time

Configure fldigi for NBEMS

Advanced topics

- Using flarq/flwrap for file transfer
 - Binary files
- Using flamp for multi-casting
- Sound card calibration
- Packet for local VHF/UHF
 - OutpostPMM
- Promote local activity.

Practice, practice, practice

Check into nets

- IN DTN, 3.5840 +1 kHz, Mon-Fri 9:00am, Olivia 8/500 *
- MI DTN, 3.5830 MHz +1 kHz, Tue/Thu/Sat 8:00pm, Olivia 8/500 *
- KY DN, 3.5850 MHz +1 kHz, Wed 8:30pm, BPSK-31 *
- OHDEN, 3.585 MHz +1 kHz, Tue 7:45pm, Olivia 8/500 *
- PA NBEMS Net, 3.5835 MHz +1 kHz, Sun 10:00am, Olivia 8/500
- PA NBEMS Net, 7.0730 MHz +1 kHz, Sun 11:00am, Olivia 8/500
- US East NBEMS Net, 7.0360 MHz +1.5 kHz, Wed 7:00pm, Olivia 8/500

^{*} May use other modes

On-line resources

- tigertronics.com
- w1hkj.com
- arrl.org/nbems
- FSD-218
 - arrl.org/files/file/Public%252oService/fsd218.pdf
- wpaares.org/html/nbems.html
- youtube.com/user/davekle38sp
- youtube.com/user/K4REF
- oliviamode.com
- wb8nut.com/digital

Demo

- Using two stations on 8om with dummy loads and sound card interfaces
 - Establish communications
 - One station sends message
 - Other station sends reply
- Using two stations on 2m with antennas, one station using acoustic coupling
 - One station sends message
 - Other station sends reply